

MINI-HALO USER’S MANUAL

Supervisor: Dr. Clarence Virtue
Author: Kaelan Renault

In Fulfillment of the Requirements for
Arthur B. McDonald Canadian Astroparticle Physics

Research Institute - Cross Disciplinary Internship

August 28th, 2020

Table of Contents

Table of Contents 1

1 Introduction 2

2 Running a Simulation 2
2.1 Connecting to Nearline 2
2.2 Setting up simulation parameters 3
2.3 Compiling the simulation 6
2.4 Executing the simulation 7
2.5 Visualizing the simulation 9

3 Parameters 12
3.1 GraphiteThickness / HDPEThickness 13
3.2 GraphiteMaterials / HDPEMaterials / LeadMaterials 14
3.3 IncludeConcreteShield / IncludeCalibrationTubes 19
3.4 CheckOverlaps 21

4 Changing the Code 22
4.1 Project layout 22
4.2 Project standards 24

5 ROOT Analysis 25
5.1 Accessing implemented ROOT graphs 25

1

1 Introduction

Unless significant changes to the code and environment are made after August 2020,
this user’s manual should be all the information required to use the Mini-HALO Monte
Carlo simulation. If this document is not satisfactory, other helpful reference documents
might include: GEANT4 Implementation of Mini HALO by Chandler Ross (2019), He-3
Proportional Counter Simulation Report by Gareth Smith (2017), and the MINI HALO
PRELIMINARY DESIGN technical document for the detector (2018). Dr. Clarence
Virtue should be the first point of contact for questions on the project as a whole, and
Remington Hill should be the first point of contact for specific technical questions
regarding the simulation or ROOT analysis.

2 Running a Simulation
2.1 Connecting to Nearline

The first thing you might want to do when you’re starting to work on this project is to run
the simulation. To do so you’ll need to connect to the Nearline computing cluster, which
is not only where you can find a copy of the project, but also where the required
versions of Geant4, ROOT, C++, and Java are already installed. Before doing anything
on Nearline, read the documentation on the SNOLAB internal site for protocols and
proper usage of the system. To connect, you’ll need to turn on your VPN connection to
SL-GEN using your SNOLAB credentials. Once that’s done, SSH to the cluster using
whatever SSH client works for you. While I was working on the project I was using
PuTTY to connect and Vcxsrv X11 to render the visualization.

Protip: To make sure Vcxsrv is running, try the command ‘xclock’ on Nearline

2

2.2 Setting up simulation parameters

Now that you’ve connected to the cluster, you should be looking at a typical linux
command line prompt.

To move to the directory containing the Mini-HALO code, run the following command:

 cd /project/halo/mini_halo

That directory should contain the miniHALO, and miniHALO-build directories, along
with backups or anything else pertaining to the project.

To run the simulation, you want to be in the miniHALO-build directory.

 cd miniHALO-build/

This directory contains all of the different macro files that can run the simulation, along
with the Makefiles, visualization files, analysis files, and everything else that is relevant
to the code at or after compiling and executing the simulation. Source code is in
miniHALO (In the miniHALO-build parent directory).

3

I’ll use my own vis_kaelan.mac file as an example for running the simulation here,
but feel free to copy it and make your own macro to simulate some other aspects of the
detector. I’m also going to use Vim, but you can use emacs or nano or any other text
editor you prefer to work on these files.

 vi vis_kaelan.mac

Once I have the file open, it looks like this:

4

The dark blue is just comments, so don’t be too concerned if you can’t make them out in
the screenshots. The /tracking/ and /run/ commands I pulled from Chandler’s old
macro on HaloShift and I don’t know for sure that they need to be there, but they
haven’t caused me any issues and might be critically important so I would include them
in your own macro. The /gps/ commands are from Geant4’s General Particle Source,
and you can find documentation detailing all the options online. The commands in my
macro generate neutrons confined to the lead block in the detector, with initial energies
pulled from the energy spectrum defined in the macro (which is the energy spectrum of
Cf-252). Other macros within this directory generate particles differently (for instance on
a plane to one side of the detector for breakthrough neutrons) and you can use those, in
addition to this macro, to help guide you on how to specify the way you want to
generate particles in the detector.

The /miniHALO/ commands are the parameters that we’ve defined within the code,
described in detail in section 3 of this manual.

Protip: Always keep /miniHALO/DetectorConstruction/update AFTER the
 /miniHALO/ parameters we talk about in section 3 in your macro.

Lastly, /run/beamon specifies the number of particles to simulate. I would start with 10
if you’re just confirming you can get everything working for the simulation. More than 10
is usually only necessary for collecting results , otherwise it only slows down simulations
when updating the geometry or testing other changes to the code.

5

2.3 Compiling the simulation

Protip: You only need to compile the simulation if you modify one of the files in
 /project/halo/mini_halo/miniHALO/ otherwise you can skip to section 2.4

Once you’ve made some changes to the source code that you want to run (always run
to make sure everything works after you’ve made changes) you’ll need to compile the
code. I’ll run through the manual steps needed to compile, but I’ve written a script that
can be submitted to slurm that does everything automatically (miniMAKE in
miniHALO-build) by running the following command from the miniHALO-build directory.

 sbatch miniMAKE

Once the slurm job returns (check squeue --user=krenault, replace my username
with yours.) check the output which will be contained in a slurm-[jobID] text file to make
sure it looks something like this (screenshot of the end of the file).You are safe to
assume that there weren’t any issues if it says “[100%] Linking CXX executable
miniHALO [100%] Built target miniHALO” at the end of the file.

6

Skip to section 2.4 if the script I wrote is still working, the following commands are the
manual steps to replace the script.

Move to the miniHALO directory like so:

 cd /project/halo/mini_halo/miniHALO/

Then you can CMake the directory:

 cmake .

Change directory back to miniHALO-build:

 cd ../miniHALO-build

Clean the old makefile, just for safety:

 make clean

Then make the directory:

 make

Again, you can confirm the project compiled if it looks like this after you make:

2.4 Executing the simulation

Now you are finally ready to simulate the detector! Again, there is a macro that I wrote to submit
to slurm, but it’s currently set up to run vis_kaelan.mac , so change it to your file name. Run
the following from the miniHALO-build directory.

 sbatch miniRUN

Once the slurm job returns (check squeue --user=krenault, replace my username
with yours.) check the output which will be contained in a slurm-[jobID] text file to make
sure it looks something like this (screenshot of the end of the file):

7

If it says “Processing Event Number ----> (number of particles specified - 1)” and then
deletes the graphics systems and visualization manager, there weren’t any crashes
during runtime. If there’s something like “Batch is interrupted” before the graphics
systems line, there was an issue with the macro. If there was a “Break” / “Segmentation
Fault” somewhere, there’s an issue with the actual source code, generally speaking.

8

Running the simulation without the script is comparatively easier this time. Run the
following command from the miniHALO-build directory, replacing my macro name with
yours:

 ./miniHALO vis_kaelan.mac

You should be able to determine if there was an issue the exact same way as above
with the output of the slurm job, but the output will all be in the terminal with this method.

2.5 Visualizing the simulation

To visualize the simulation, you first need to run it with these commands specified in the
macro file:

Once you’ve run a simulation with the above parameters enabled (See section 2.4),
there will be a G4Data0.heprep file in the miniHALO-build directory. To view the
visualization you’ll need to make sure your X11 server (or equivalent) is enabled and
run the following command:

 java -jar HepRApp.jar -file G4Data0.heprep

9

The visualization should load looking something like the following image when you first
open it:

I’ll leave learning to use HepRApp out of the scope of this document, but you can use
some of the buttons in the bottom left corner to adjust your view and the sliders along
the X and Y axis to rotate or move along that axis. The visualization should look
something like the following images where you can see it from different angles:

10

11

3 Parameters

There are a number of parameters that can be set in the macro file used to set-up the
simulation that we’ve defined. All the parameters have a default value, so none of them
need to be explicitly called for everything to run smoothly. They also all have some error
handling, so look out for error messages in the output if you tried to make a change and
it’s not taking. That probably means your input isn’t valid and the simulation used the
default values for that parameter. All these parameters start with
/miniHALO/DetectorConstruction/ in the macro file.

12

3.1 GraphiteThickness / HDPEThickness

The GraphiteThickness and HDPEThickness parameters were developed before the
material parameters of section 3.2, and should only be used if the materials parameters
are not being specified. The reason for this is that the thickness parameters prevent
some volumes from being instantiated (those furthest away from the center of the
detector), and the materials parameters don’t register that those volumes won’t actually
get created. This means that if you specify graphite thickness of 4.5 inches and specify
the graphite material to be Aluminum-graphite-HDPE; expecting three 1.5 inch layers of
the different materials, you will be disappointed. You will end up with 2 inches of
aluminum, 2 inches of graphite, and 0.5 inches of HDPE.

Protip: Use the Materials commands instead of the Thickness commands unless
 you really know what you’re doing and you’re sure this is what you want.

That being said, the parameters are easy to use, you just specify a floating point
number in 0.5 inch increments from 0 to 6. When the simulation is run, it will create the
layers from the inside of the detector outwards, stopping at the desired thickness.

Given the above parameters, the visualization should look like this (When compared to
the last image in section 2.5, which is the same configuration without any parameters
specified):

13

Similarly, running the simulation with the following parameter specified results in the
following configuration for the detector.

3.2 GraphiteMaterials / HDPEMaterials / LeadMaterials

The three materials parameters are much more interesting than the parameters in
section 3.1, and everything that can be done using the thickness parameters can also
be done with these parameters.

Both the graphite and HDPE material parameters work in exactly the same way. You
optionally provide a side (or many sides) of the detector and provide a material (or many
materials). This will apply that configuration of materials to the sides specified. If no
sides are specified, it will apply to all 5 sides of the detector. These parameters can be
specified multiple times so that different material configurations can be applied to
different sides of the detector. It’s worth mentioning that the sides don’t need to be
specified in any particular order. It’s also worth mentioning that the number of materials
needs to be a factor of 12, so that they can be split evenly across the 12 layers of the
material. That means you can specify 0 or more sides per parameter call and 1, 2, 3, 4,
6, or 12 materials per parameter. Sides and materials are all separated by hyphens
(And not spaces). I’ll walk through a number of examples to showcase the different
capabilities of these parameters.

14

Example #1: All HDPE to air. If we don’t specify any sides and only specify one
material, all sides of the detector will have all their layers converted into the new
material (in this case Air, which renders as invisible in the detector).

The diagrams showing the differences to the detector as a result of these parameters
can be compared to the last image in section 2.5, which is the same view of the detector
without any /miniHALO/DetectorConstruction/ parameters specified.

15

Example #2: Half graphite to HDPE, half to Aluminum. We can also specify “all” as the
side, which is functionally exactly the same as not specifying a side. Specifying two
materials changes the innermost half of the layers into the first material and the
outermost half of the layers into the second material specified.

16

Example #3: Top HDPE to alternating 1.5 inch layers of air and graphite, right and left
HDPE to alternating 0.5 inch layers of lead and aluminum. This example shows off more
ways to slice the layers (in 4 segments and 12 segments in these examples) and shows
the same parameter being called multiple times to set different sides of the detector with
different material configurations. To be clear, the screenshot of the parameter call is
word-wrapping in the middle of the word “Aluminum”, it is not broken into three lines.

17

The LeadMaterials parameter is more simple than the other two material parameters
due to the fact that the lead block is all one volume without layers or sides, and
therefore the parameter always accepts only a single material name. The example
below, of this parameter, shows the change to a block of HDPE in place of the lead
block.

18

3.3 IncludeConcreteShield / IncludeCalibrationTubes

These two binary parameters take a true or false value (I always used 0 for false and 1
for true, but other values that can be evaluated to true or false will also work). If the
value is true, that part of the detector is instantiated when the detector is constructed. If
false, that section of the detector is not created. The purpose of these parameters is
primarily so that the macros for the different neutron generation modes (Cf-252
calibration, break-through neutrons, break-through-with-shielding) can enable those
aspects of the detector that are relevant to them. For the “default” situation of having
neutrons generated within the lead volume both the calibration tubes and concrete block
are not present. The following screenshots show the results of enabling the parameters.

19

The above screenshot of the detector with concrete shielding includes 10 neutrons
instead of the single neutron being simulated in all the other screenshots so far, and
because the break-through neutrons are so high-energy compared to the Cf-252
neutron energy spectrum used, there are a lot of particle tracks being visualised here
(the green lines), but the actual concrete shielding is the white box to the right of the
detector.

20

3.4 CheckOverlaps

The CheckOverlaps parameter is the only one I’ve implemented that doesn’t actually
affect the geometry of the detector. When creating new volumes, set it to true in order to
have every volume being created check if it’s creation will overlap with any existing
volumes.

The way it works is that when creating physical volumes you can set a boolean
parameter to check for overlaps on creation and all the volumes created so far have that
boolean set as the parameter value (which defaults to false). The reason I’m mentioning
it is because if you are creating new volumes you should follow the same pattern I’ve
established in DetectorConstruction and make sure that the check_overlaps variable
is set in the last position of the physical volume initialization.

The result of turning this parameter on or off is that the text output of running a
simulation will include or exclude a block of text that will be very similar to this:

21

There will be as many lines as there are volumes in the simulation. If any of these lines
say “Overlap is detected!” instead of “OK!”, then two volumes overlap. This will often
crash a simulation because if any particles are simulated in the overlapping space they
won’t know which material they are in and the simulation will break down. To avoid that,
you’ll need to resize or reposition one or both of the volumes to match the configuration
of the detector.

Protip: If volumes are bounded by the exact same coordinates, they are
 treated as overlapping. Consider spacing your volumes a tiny bit even if
they are supposed to be adjacent.

4 Changing the Code

The code repository is currently on Nearline at the following location:

 cd /project/halo/mini_halo/miniHALO/

It can also be found on GitHub, as of August 2020 it can be located at
https://github.com/RemiHill/miniHALO, though I believe it’s access is by invite only. If all
you’re doing is modifying the aspects of the detector that can be accessed via
parameters (section 3), use them instead of changing the code.

4.1 Project layout

The miniHALO directory contains a number of files in addition to two subdirectories. The
files are primarily makefiles and macros for running the simulation. The
kaelan_analysis.cc file is the post-simulation ROOT file I put together, explained in
more detail in section 5. The actual code that makes up the simulation is located in the
/src/ and /include/ subdirectories. The former contains all the source code, the
latter all the header files.

In the src directory there are 9 files, only a few of which I ever really worked on.
miniHALOAnalysis.cc contains all the code that Remington wrote to set up the
TTree values for the ROOT analysis, miniHALOPrimaryGeneratorAction.cc
contains all the code that Remington wrote to set up using the Geant4 General Particle
Source to manage particle creation using the macro commands discussed in section
2.2.

22

https://github.com/RemiHill/miniHALO

The two files I really worked with in the src directory are the
miniHALODetectorConstruction.cc and the miniHALODetectorMessenger.cc
files. The former contains most of the code that establishes the detector’s geometry; the
latter contains the code that manages the parameters discussed in section 3. Instead of
going through how the code works in those two files line-by-line, I’m going to go through
what I consider to be probable things you might want to do when changing the code and
explain, in broad strokes, how to do them.

Case #1: Adding a parameter
In order to add a brand new parameter to the simulation, you’ll need to follow a few
steps in all four files.

miniHALODetectorMessenger.hh
- You’ll need to add a G4UIcmd declaration using the same format as found for

other parameters in that file.

miniHALODetectorMessenger.cc

- In the constructor you’ll need to copy/paste and modify the four lines that initialize
the G4UIcmd object declared in the previous step. All these are pretty
self-explanatory, the only thing that usually changes is the explanation in the
SetGuidance command.

- Add a delete line in the destructor.
- In the SetNewValue function add a new if branch that calls the Set function you’ll

create in the next files, to the new value converted to the appropriate type to your
new parameter.

miniHALODetectorConstruction.hh

- Add a Set function declaration as a public member with appropriate arguments.
- Add one or more variables that will drive the purpose of your parameter as

private members. Make sure to comment the purpose of the variable, which can
probably be copy/pasted from SetGuidance in the previous file.

- Add a Get function declaration as a private member.

miniHALODetectorConstruction.cc

- Specify the default value of the parameter in the constructor using the Set
function.

- Define the Set function of the parameter.
- Define the Get function of the parameter.
- Use the variables being set to modify the Construct function to suit your needs.

23

Case #2: Adding a material
miniHALODetectorConstruction.hh

- Ensure the constituent materials/elements are declared as private members.
- Declare the new material as a private member.

miniHALODetectorConstruction.cc::SpecifyMaterials()

- Ensure all the constituent elements and materials are defined. If they aren’t,
define them in the same way that others are defined.

- Define your new material by specifying the density, name, and number of
component elements/materials. Assign the components to the new material.

Protip: The only material I had to define is Aluminum6063, so check that out for

 an example of the above material definition.

Case #3:

4.2 Project standards

The purpose of this section is to try and maintain some consistency and readability in
the project’s code, especially due to the cleanup that Remington Hill and I had to
perform as a result of people using their own styles and formats in the project prior to
the summer of 2020. These “best practices” might be out of date but unless directed by
your supervisor or a more recent document explaining project standards, I advise that
anyone modifying the Mini-HALO Monte Carlo simulation code try to adhere to these
guidelines.

Variables should be in all lowercase letters, with words being separated by underscores
(‘_’). In any instance where a Geant4 volume is being defined, the solid / logic / physical
volume should start with s_ / l_ / p_ and the volume name should match the G4 object
name (variable name matches the first string parameter). Variable names should be as
self-descriptive as possible not only to assist in code readability but also to assist in
debugging issues when the G4 object name is available. Ideally variable names should
not include numbers (i.e. s_angle_1, s_angle_2, etc.) since this isn’t descriptive at
all but some exceptions apply (like the 12 layers of the left graphite block).

Comments should be plentiful in the code, explaining what the reasoning behind a
certain block of code or as an overview of a function. Without comments, the next
person who modifies the project will have a much harder time following the reasoning

24

behind your changes and might overwrite them since they don’t understand the purpose
of your changes.

As of August 2020, most simulations will be run on SNOLAB’s high-performance
computing cluster “Nearline”. That makes efficiency more important than ever because
if we are negligent in ensuring that the simulations are as fast as possible, we are
needlessly holding up computing nodes that could be used by other researchers. To
that effect, try to optimize the code. Avoid re-initializing an identical object within a loop
(like most physical and logical volumes), avoid branching when possible, avoid using
expensive operations when a simpler one will do (i.e. A * A instead of A2); and avoid
evaluating the same thing over and over again (i.e. same x dimension of many
volumes). I tried to clean up the DetectorConstruction function before writing this user
manual, but there is work that can be done in other functions and files if you’re finding
that simulations are running more slowly than expected.

5 ROOT Analysis

The ROOT analysis was facilitated largely by Remington Hill, though I will provide the
insights into the process that I can to facilitate use. We’ve implemented 27
one-dimensional histograms and two-dimensional scatter plots to show different aspects
of the data collected during the simulation. That data is collected and stored by objects
in the /project/halo/mini_halo/miniHALO/src/miniHALOAnalysis.cc file.
The graphs are put together by ROOT, utilizing the C++ commands that make up the
/project/halo/mini_halo/miniHALO/kaelan_analysis.cc file. To create
new graphs, follow the examples in kaelan_analysis.cc, unfortunately I can’t guide
you in manipulating the miniHALOAnalysis.cc file.

5.1 Accessing implemented ROOT graphs

To see the graphs that have already been put together, you’ll need to first run a
simulation with as many particles as possible (10,000 neutrons has been my go-to for a
quick simulation that has enough data to actually see what’s going on). Once you’ve
completed the run, move to the following directory:

 cd /project/halo/mini_halo/miniHALO-build/

25

Then launch ROOT, the -l launches without the logo and passing the analysis file
automatically runs that code when ROOT starts.

 root -l ../miniHALO/kaelan_analysis.cc

When you’ll need to wait for the above commands to complete, which will look similar to
the following screenshot:

Once “root [1]” is visible, you can launch the TBrowser to view the histograms
created. I used the variable name “b”, but it’s completely arbitrary.

The window that appears should look similar to the following:

26

Scroll down in the menu on the left until you see test-output.root, then click on it. You
should now be able to click on any of the graphs that are nested in that section and see
the data. See the following screenshot for an example.

27

This last screenshot is a zoomed-in version of the menu on the left of the above image.

28

