Can dwarf galaxies discriminate between CDM and alternatives?

The Physics of Galaxy Scaling Relations and the Nature of Dark Matter
July 20, 2018
Kingston, Ontario

1) Fermi gamma-ray limits
2) DM core/cusps
3) dSph orbital motions/Gaia
Alternatives to cold dark matter?

- The WIMP paradigm is starting to be tested experimentally
- E.g. spin-independent operators strongly constrained, but many other are possible (Fan et al. 2010; Fitzpatrick et al. 2012)
Alternatives to cold dark matter?

- The WIMP paradigm is starting to be tested experimentally
- E.g. spin-independent operators strongly constrained, but many other are possible (Fan et al. 2010; Fitzpatrick et al. 2012)

Observational systematics make it difficult to distinguish between CDM and alternatives
Milky Way satellites

Dark Energy Survey:
Drlica-Wagner et al. 2016
Milky Way satellites

Dark matter bounds from dSphs with gamma rays

- Integrated DM masses of dSphs well-determined within characteristic Fermi-LAT angular resolution
- Combine measured gamma-ray flux upper bound with the total dark matter mass in each satellite to get upper bound on the annihilation cross section

Fermi-LAT collaboration
PRL, 1108.3546
PRD, 1310.0828
PRL, 1503.02641

- Bounds at higher DM mass from ground-based observatories
- Lower mass bounds from CMB (Planck)
Gamma-ray excesses?

Possible gamma-ray excesses in a few ultra-faint satellites: e.g. Reticulum II

Geringer-Sameth et al. PRL 2015
Hooper & Linden JCAP 2015
Li et al. PRD 1805.06612
Gamma-ray excesses?

Possible gamma-ray excesses in a few ultra-faint satellites: e.g. Reticulum II

Geringer-Sameth et al. PRL 2015
Hooper & Linden JCAP 2015
Li et al. PRD 1805.06612

Probably not strongest sources from measured DM distribution (Simon et al. 2015)
Gamma-ray excesses?

Possible gamma-ray excesses in a few ultra-faint satellites: e.g. Reticulum II

Geringer-Sameth et al. PRL 2015
Hooper & Linden JCAP 2015
Li et al. PRD 1805.06612

Probably not strongest sources from measured DM distribution (Simon et al. 2015)

Gamma-ray excesses do not correlate with measured J-factors

Can DM signal be found with Fermi?

Spectroscopic follow up likely to be more difficult for MW satellites discovered in future

Mild correlation between J-factor and structure parameters.
Are dSphs simple single population stellar systems?

- Many DM density profiles explored
- Corrections from non-spherical potentials (Hayashi & Chiba 2012; Kowalczyk et al. 2013)
- Stellar distribution function-based models (Strigari, Frenk, White 2010, 2015, 2018)
- Orbit-based models (Breddels et al. 2012; Jardel & Gebhardt 2012, 2013)
Multiple stellar populations

- Some dSphs (Sculptor, ANDII) show evidence for multiple stellar populations

- Some kinematic studies disfavor NFW for Sculptor (Walker & Penarrubia 2011; Amorisco & Evans: Agnelle & Evans 2012)

- Some studies show NFW cannot be ruled out for Sculptor (Breddels & Helmi 2014; Strigari, Frenk, White 2014)

- No apparent addition information from ANDII multiple populations (Ho et al. 2013)
Internal stellar proper motions

3D motions in the Sculptor dwarf galaxy as a glimpse of a new era

D. Massari1,2,*, M. A. Breddels1, A. Helmi1, L. Posti1, A. G. A. Brown2, E. Tolstoy1

- Internal stellar proper motions provide missing phase space measurements (Wilkinson et al. 2001; LS, Bullock, Kaplinghat 2007)
- Potential to distinguish between DM cores/cusps
- HST Requirements:
 - Sculptor requires PMs ~ 22 micro-arcsec/year
 - Positional accuracy of 0.003 ACS/WFC per epoch
 - For N exposures, the positional accuracy per exposure is 0.003 sqrt(N)
 - For N \sim5-19, positional accuracy per exposure is \sim 0.01 pixel
- Not easy!

\[
\sigma_R = 11.5 \pm 4.3 \text{ km s}^{-1} \quad \sigma_T = 8.5 \pm 3.2 \text{ km s}^{-1}
\]
Sculptor stellar populations & proper motions

- Self-consistent stellar DF model + LOS velocities predict the PM velocity dispersion profiles
- Multiple populations + PMs provide most significant test of NFW vs cored Burkert model in dSphs
- Gaia + data unable to discriminate cores vs. cusps
- Require PM velocity dispersions to \(\sim 1 \) km/s (LS, Frenk, White 2018)
Orbits of dSphs

- 3D orbital dynamics of dSphs from Gaia
- Members from stellar spectra (Gaia collaboration/Helmi et al., Fritz et al., Simon 2018)
- Members from Gaia photometry (Masser & Helmi 2018)

- Members identified from DES photometry & Gaia (Pace & Li 2018)
Orbits of dSphs

- Fornax analogues in APSOTLE show a range tidal disruption possibilities (Mei-Yu Wang, Azi Fattahi et al. 2017)

- Difficult to match the kinematics & the orbital dynamics simultaneously

- Best model: Stream with surface brightness ~ 32 mag/arcsec^2 (DES, LSST?)
dSphs with deep photometry

- **Fornax**
 - Enhanced SF ~3-4 Gyr ago (Coleman & de Jong 2008)
 - CDM infall times ~9 Gyr ago (Rocha et al. 2012, Wang et al. 2015)
 - Heavily stripped halo
 - No apparent tidal signature

- **Carina**
 - Tidal disruption
 - Multiple episodes of star formation
 - Kinematic models include tidal effects (Ural et al. 2015)
 - DECam observations indication minimal tidal disruption (McMonigal et al. 2015)
dSphs with deep photometry

- **Fornax**
 - Enhanced SF ~3-4 Gyr ago (Coleman & de Jong 2008)
 - CDM infall times ~9 Gyr ago (Rocha et al. 2012, Wang et al. 2015)
 - Heavily stripped halo
 - No apparent tidal signature

- **Carina**
 - Tidal disruption
 - Multiple episodes of star formation
 - Kinematic models include tidal effects (Ural et al. 2015)
 - DECam observations indication minimal tidal disruption (McMonigal et al. 2015)

Table 1. Fornax VST ATLAS catalogue

<table>
<thead>
<tr>
<th>No.</th>
<th>RA (ICRS)</th>
<th>Dec (ICRS)</th>
<th>g (mag)</th>
<th>r (mag)</th>
<th>i (mag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>527</td>
<td>2 10 36</td>
<td>00 00 56.74</td>
<td>10.74</td>
<td>15.46</td>
<td>0.00</td>
</tr>
<tr>
<td>528</td>
<td>2 10 33</td>
<td>00 00 56.80</td>
<td>22.05</td>
<td>0.73</td>
<td>1.21</td>
</tr>
<tr>
<td>529</td>
<td>2 10 34</td>
<td>00 00 56.93</td>
<td>21.59</td>
<td>0.05</td>
<td>1.10</td>
</tr>
<tr>
<td>530</td>
<td>2 10 37</td>
<td>00 00 57.12</td>
<td>20.99</td>
<td>0.02</td>
<td>1.11</td>
</tr>
<tr>
<td>531</td>
<td>2 10 19</td>
<td>00 00 57.14</td>
<td>19.28</td>
<td>0.01</td>
<td>1.08</td>
</tr>
<tr>
<td>532</td>
<td>2 10 10</td>
<td>00 00 57.18</td>
<td>22.72</td>
<td>0.10</td>
<td>1.61</td>
</tr>
<tr>
<td>533</td>
<td>2 10 34</td>
<td>00 00 57.19</td>
<td>22.84</td>
<td>0.14</td>
<td>1.32</td>
</tr>
<tr>
<td>534</td>
<td>2 10 56</td>
<td>00 00 57.23</td>
<td>21.09</td>
<td>0.03</td>
<td>1.08</td>
</tr>
<tr>
<td>535</td>
<td>2 10 18</td>
<td>00 00 57.30</td>
<td>0.00</td>
<td>0.00</td>
<td>21.31</td>
</tr>
<tr>
<td>536</td>
<td>2 10 19</td>
<td>00 00 57.31</td>
<td>20.38</td>
<td>0.02</td>
<td>1.08</td>
</tr>
</tbody>
</table>

As a sample of the final Fornax catalogue. The full catalogue is available online as supplementary material. Cambridge Astronomical Survey Unit pipeline classifications are described in Section 2.
dSphs with deep photometry

- Fornax
 - Enhanced SF ~3-4 Gyr ago (Coleman & de Jong 2008)
 - CDM infall times ~9 Gyr ago (Rocha et al. 2012, Wang et al. 2015)
 - Heavily stripped halo
 - No apparent tidal signature

- Carina
 - Tidal disruption
 - Multiple episodes of star formation
 - Kinematic models include tidal effects (Ural et al. 2015)
 - DECam observations indication minimal tidal disruption (McMonigal et al. 2015)

Table 1.

<table>
<thead>
<tr>
<th>No.</th>
<th>RA (ICRS)</th>
<th>Dec (ICRS)</th>
<th>g (mag)</th>
<th>r (mag)</th>
<th>i (mag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>527</td>
<td>2 36 10.74</td>
<td>31 59 56.74</td>
<td>15.46</td>
<td>0.001</td>
<td>11.4</td>
</tr>
<tr>
<td>528</td>
<td>2 33 20.43</td>
<td>31 59 56.80</td>
<td>22.05</td>
<td>0.073</td>
<td>21.20</td>
</tr>
<tr>
<td>529</td>
<td>2 34 22.38</td>
<td>31 59 56.93</td>
<td>21.59</td>
<td>0.050</td>
<td>12.0</td>
</tr>
<tr>
<td>530</td>
<td>2 50 37.34</td>
<td>31 59 57.12</td>
<td>20.99</td>
<td>0.023</td>
<td>11.9</td>
</tr>
<tr>
<td>531</td>
<td>2 32 19.91</td>
<td>31 59 57.14</td>
<td>19.28</td>
<td>0.009</td>
<td>11.8</td>
</tr>
<tr>
<td>532</td>
<td>2 48 10.94</td>
<td>31 59 57.18</td>
<td>22.72</td>
<td>0.102</td>
<td>21.61</td>
</tr>
<tr>
<td>533</td>
<td>2 36 34.43</td>
<td>31 59 57.19</td>
<td>22.85</td>
<td>0.144</td>
<td>32.1</td>
</tr>
<tr>
<td>534</td>
<td>2 31 56.08</td>
<td>31 59 57.23</td>
<td>21.09</td>
<td>0.033</td>
<td>11.9</td>
</tr>
<tr>
<td>535</td>
<td>2 28 18.99</td>
<td>31 59 57.31</td>
<td>0.00</td>
<td>0.000</td>
<td>21.31</td>
</tr>
<tr>
<td>536</td>
<td>2 35 19.12</td>
<td>31 59 57.32</td>
<td>20.39</td>
<td>0.019</td>
<td>32.1</td>
</tr>
</tbody>
</table>

As a sample of entries in the final Fornax catalogue. The full catalogue is available online.
Summary

How far can sensitivity go?

Forthcoming Gaia data releases?